VLMV Logo

Vehicle Lane Merge Visual Dataset

5GCAR logo

Dataset: Lane Merge Maneuver of Vehicles

Objective 1: Evaluation of vehicle localization techniques

  • Use video data for 3D vehicle localization, GNSS-RTK for evaluation [1]

Objective 2: Learning of lane merge coordination

  • Use GNSS-RTK and vision-based vehicle positions for learning cooperative maneuvers [3]

Data Set:

  • 85 lane merges performed by human drivers on 7 recording days
  • Temporally synchronized multi-view video streams (four cameras)
  • Accurate camera calibration [1,5]
  • Vehicle positions:
    • GNSS-RTK (see D5.2)
    • camera-based tracking and localization [1,4]
  • Presentation at ICPR 2020/21 :Poster
  • Supplementary video:
    https://youtu.be/tiPABhZoFEw

Download: 7 sets (day01 .. day07)

  • Video data
    • 4 synchronized video streams, 1824x1536, mjpeg format
    • camera calibration
  • Localization data
    • vehicle localization from GNSS-RTK
    • heading, speed, acceleration from in-vehicle measurements
    • camera-based localization
Image
Version 1.0 - all 85 multi-view sequences (video, calibration, and localization) ready.
log.txt

day01:  3 lane merges
video              calibration
localization_GNSS-RTK

day02:  12 lane merges
video              calibration
localization_GNSS-RTK

day03:  4 lane merges
video              calibration
localization_GNSS-RTK

day04:  16 lane merges
video              calibration
localization_GNSS-RTK

day05:  13 lane merges
video              calibration
localization_GNSS-RTK

day06:  27 lane merges
video              calibration
localization_GNSS-RTK

day07:  10 lane merges
video              calibration
localization_GNSS-RTK

Camera-based localization for all VLMV vehicles [1]:  localization_ICPR2020

VLMV Paper:

[1] K. Cordes and H. Broszio: "Vehicle Lane Merge Visual Benchmark", International Conference on Pattern Recognition (ICPR), IEEE, Jan. 2021, Paper at ieeexplore

Additional References:

[2] 5GCAR final demonstration (Video)

[3] O. Nassef, L. Sequeira, E. Salam, & T. Mahmoodi: "Building a Lane Merge Coordination for Connected Vehicles Using Deep Reinforcement Learning" , IEEE Internet of Things Journal, 2020

[4] K. Cordes, N.Nolte, N. Meine, and H. Broszio: "Accuracy Evaluation of Camera-based Vehicle Localization", International Conference on Connected Vehicles and Expo (ICCVE), IEEE, pp. 1-7, Nov. 2019, paper at ieeexplore

[5] K. Cordes and H. Broszio: "Constrained Multi Camera Calibration for Lane Merge Observation", International Conference on Computer Vision Theory and Applications (VISAPP), SciTePress, pp. 529-536, Feb. 2019, paper preprint (pdf)

[6] K. Cordes, H. Broszio, H Wymeersch, S Saur, F Wen, Nil Garcia, Hyowon Kim: "Radio‐Based Positioning and Video‐Based Positioning",
https://doi.org/10.1002/9781119692676.ch8, "Cellular V2X for Connected Automated Driving", Wiley, April 2021
, Book Chapter at ieeexplore

Wir benutzen Cookies

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.